Rapid thermal lysis of cells using silicon-diamond microcantilever heaters.

نویسندگان

  • Natalya Privorotskaya
  • Yi-Shao Liu
  • Jungchul Lee
  • Hongjun Zeng
  • John A Carlisle
  • Adarsh Radadia
  • Larry Millet
  • Rashid Bashir
  • William P King
چکیده

This paper presents the design and application of microcantilever heaters for biochemical applications. Thermal lysis of biological cells was demonstrated as a specific example. The microcantilever heaters, fabricated from selectively doped single crystal silicon, provide local resistive heating with highly uniform temperature distribution across the cantilevers. Very importantly, the microcantilever heaters were coated with a layer of 100 nm thick electrically insulating ultrananocrystalline diamond (UNCD) layer used for cell immobilization on the cantilever surface. Fibroblast cells or bacterial cells were immobilized on the UNCD/cantilever surfaces and thermal lysis was demonstrated via optical fluorescence microscopy. Upon electrical heating of the cantilever structures to 93 degrees C for 30 seconds, fibroblast cell and nuclear membrane were compromised and the cells were lysed. Over 90% of viable bacteria were also lysed after 15 seconds of heating at 93 degrees C. This work demonstrates the utility of silicon-UNCD heated microcantilevers for rapid cell lysis and forms the basis for other rapid and localized temperature-regulated microbiological experiments in cantilever-based lab on chip applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultralocalized thermal reactions in subnanoliter droplets-in-air.

Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products. Approa...

متن کامل

Polymeric nanolayers as actuators for ultrasensitive thermal bimorphs.

Polymeric nanolayers are introduced here as active, thermal-stress mediating structures facilitating extremely sensitive thermal detection based upon the thermomechanical response of a bimaterial polymer-silicon microcantilever. To maximize the bimaterial bending effect, the microcantilever bimorph is composed of stiff polysilicon, with a strongly adhered polymer deposited via plasma-enhanced c...

متن کامل

Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films

Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form s...

متن کامل

High S/N Ratio Slotted Step Piezoresistive Microcantilever Designs for Biosensors

This study proposes new microcantilever designs in slotted step configuration to improve the S/N ratio of surface stress-based sensors used in physical, chemical, biochemical and biosensor applications. The cantilevers are made of silicon dioxide with a u-shaped silicon piezoresistor in p-doped. The cantilever step length and piezoresistor length is varied along with the operating voltage to ch...

متن کامل

Dynamic Thermal Control of Silicon Nitride Photonic Integrated Circuits

Multiple heaters in photonic integrated circuits must be controlled accurately to achieve reliable performance of the thermooptic system. In this paper, we show wavelength stabilization using a system with unique design for silicon nitride circuits. Keywords; Thermooptic, dynamic, control, feedback

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 10 9  شماره 

صفحات  -

تاریخ انتشار 2010